Some Conjectures on Wronskian and Casorati Determinants of Orthogonal Polynomials

نویسندگان

  • Antonio J. Durán Guardeño
  • Mario Pérez
  • Juan Luis Varona
چکیده

In this paper we conjecture some regularity properties for the zeros of Wronskian and Casorati determinants whose entries are orthogonal polynomials. These determinants are formed by choosing orthogonal polynomials whose degrees run on a finite set F of nonnegative integers. The case when F is formed by consecutive integers was studied by Karlin and Szegő. 2010 Mathematics Subject Classification: Primary 42C05; Secondary 15B05, 26C10.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exceptional Charlier and Hermite orthogonal polynomials

Using Casorati determinants of Charlier polynomials (ca n )n , we construct for each finite set F of positive integers a sequence of polynomials cF n , n ∈ σF , which are eigenfunctions of a second order difference operator, where σF is certain infinite set of nonnegative integers, σF ( N. For suitable finite sets F (we call them admissible sets), we prove that the polynomials cF n , n ∈ σF , a...

متن کامل

Exceptional Meixner and Laguerre orthogonal polynomials

Using Casorati determinants of Meixner polynomials (m n )n , we construct for each pair F = (F1, F2) of finite sets of positive integers a sequence of polynomials ma,c;F n , n ∈ σF , which are eigenfunctions of a second order difference operator, where σF is certain infinite set of nonnegative integers, σF N. When c and F satisfy a suitable admissibility condition, we prove that the polynomials...

متن کامل

Some new families of definite polynomials and the composition conjectures

The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...

متن کامل

On Certain Wronskians of Multiple Orthogonal Polynomials

We consider determinants of Wronskian type whose entries are multiple orthogonal polynomials associated with a path connecting two multi-indices. By assuming that the weight functions form an algebraic Chebyshev (AT) system, we show that the polynomials represented by the Wronskians keep a constant sign in some cases, while in some other cases oscillatory behavior appears, which generalizes cla...

متن کامل

On certain formulas of Karlin and Szegö

Some identities due to Karlin and Szegö which provide a relationship between determinants of classical orthogonal polynomials of Wronskian and Hankel type are shown to be specializations of a general algebraic identity between minors of a matrix. Résumé On montre que des familles d’identités découvertes par Karlin et Szegö, qui relient des Wronskiens et des déterminants de Hankel de polynômes o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Experimental Mathematics

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2015